3.354 \(\int \frac{\sqrt{4+3 x^2+x^4}}{(7+5 x^2)^2} \, dx\)

Optimal. Leaf size=284 \[ -\frac{\left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right ),\frac{1}{8}\right )}{35 \sqrt{2} \sqrt{x^4+3 x^2+4}}-\frac{\sqrt{x^4+3 x^2+4} x}{70 \left (x^2+2\right )}+\frac{\sqrt{x^4+3 x^2+4} x}{14 \left (5 x^2+7\right )}+\frac{51 \tan ^{-1}\left (\frac{2 \sqrt{\frac{11}{35}} x}{\sqrt{x^4+3 x^2+4}}\right )}{280 \sqrt{385}}+\frac{\left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{35 \sqrt{2} \sqrt{x^4+3 x^2+4}}+\frac{289 \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} \Pi \left (-\frac{9}{280};2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{9800 \sqrt{2} \sqrt{x^4+3 x^2+4}} \]

[Out]

-(x*Sqrt[4 + 3*x^2 + x^4])/(70*(2 + x^2)) + (x*Sqrt[4 + 3*x^2 + x^4])/(14*(7 + 5*x^2)) + (51*ArcTan[(2*Sqrt[11
/35]*x)/Sqrt[4 + 3*x^2 + x^4]])/(280*Sqrt[385]) + ((2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*A
rcTan[x/Sqrt[2]], 1/8])/(35*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]) - ((2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*El
lipticF[2*ArcTan[x/Sqrt[2]], 1/8])/(35*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]) + (289*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/
(2 + x^2)^2]*EllipticPi[-9/280, 2*ArcTan[x/Sqrt[2]], 1/8])/(9800*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.150621, antiderivative size = 284, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1226, 1197, 1103, 1195, 1216, 1706} \[ -\frac{\sqrt{x^4+3 x^2+4} x}{70 \left (x^2+2\right )}+\frac{\sqrt{x^4+3 x^2+4} x}{14 \left (5 x^2+7\right )}+\frac{51 \tan ^{-1}\left (\frac{2 \sqrt{\frac{11}{35}} x}{\sqrt{x^4+3 x^2+4}}\right )}{280 \sqrt{385}}-\frac{\left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{35 \sqrt{2} \sqrt{x^4+3 x^2+4}}+\frac{\left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{35 \sqrt{2} \sqrt{x^4+3 x^2+4}}+\frac{289 \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} \Pi \left (-\frac{9}{280};2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{9800 \sqrt{2} \sqrt{x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[4 + 3*x^2 + x^4]/(7 + 5*x^2)^2,x]

[Out]

-(x*Sqrt[4 + 3*x^2 + x^4])/(70*(2 + x^2)) + (x*Sqrt[4 + 3*x^2 + x^4])/(14*(7 + 5*x^2)) + (51*ArcTan[(2*Sqrt[11
/35]*x)/Sqrt[4 + 3*x^2 + x^4]])/(280*Sqrt[385]) + ((2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*A
rcTan[x/Sqrt[2]], 1/8])/(35*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]) - ((2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*El
lipticF[2*ArcTan[x/Sqrt[2]], 1/8])/(35*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]) + (289*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/
(2 + x^2)^2]*EllipticPi[-9/280, 2*ArcTan[x/Sqrt[2]], 1/8])/(9800*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])

Rule 1226

Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[(x*Sqrt[a + b*x^2 + c*
x^4])/(2*d*(d + e*x^2)), x] + (Dist[c/(2*d*e^2), Int[(d - e*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[(c*d^2
 - a*e^2)/(2*d*e^2), Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[
b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1216

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Di
st[(c*d + a*e*q)/(c*d^2 - a*e^2), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[(a*e*(e + d*q))/(c*d^2 - a*e^2)
, Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a
*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]

Rule 1706

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, -Simp[((B*d - A*e)*ArcTan[(Rt[-b + (c*d)/e + (a*e)/d, 2]*x)/Sqrt[a + b*x^2 + c*x^4]])/(2*d*e
*Rt[-b + (c*d)/e + (a*e)/d, 2]), x] + Simp[((B*d + A*e)*(A + B*x^2)*Sqrt[(A^2*(a + b*x^2 + c*x^4))/(a*(A + B*x
^2)^2)]*EllipticPi[Cancel[-((B*d - A*e)^2/(4*d*e*A*B))], 2*ArcTan[q*x], 1/2 - (b*A)/(4*a*B)])/(4*d*e*A*q*Sqrt[
a + b*x^2 + c*x^4]), x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{4+3 x^2+x^4}}{\left (7+5 x^2\right )^2} \, dx &=\frac{x \sqrt{4+3 x^2+x^4}}{14 \left (7+5 x^2\right )}+\frac{1}{350} \int \frac{7-5 x^2}{\sqrt{4+3 x^2+x^4}} \, dx+\frac{51}{350} \int \frac{1}{\left (7+5 x^2\right ) \sqrt{4+3 x^2+x^4}} \, dx\\ &=\frac{x \sqrt{4+3 x^2+x^4}}{14 \left (7+5 x^2\right )}-\frac{3}{350} \int \frac{1}{\sqrt{4+3 x^2+x^4}} \, dx+\frac{1}{35} \int \frac{1-\frac{x^2}{2}}{\sqrt{4+3 x^2+x^4}} \, dx-\frac{17}{350} \int \frac{1}{\sqrt{4+3 x^2+x^4}} \, dx+\frac{17}{35} \int \frac{1+\frac{x^2}{2}}{\left (7+5 x^2\right ) \sqrt{4+3 x^2+x^4}} \, dx\\ &=-\frac{x \sqrt{4+3 x^2+x^4}}{70 \left (2+x^2\right )}+\frac{x \sqrt{4+3 x^2+x^4}}{14 \left (7+5 x^2\right )}+\frac{51 \tan ^{-1}\left (\frac{2 \sqrt{\frac{11}{35}} x}{\sqrt{4+3 x^2+x^4}}\right )}{280 \sqrt{385}}+\frac{\left (2+x^2\right ) \sqrt{\frac{4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{35 \sqrt{2} \sqrt{4+3 x^2+x^4}}-\frac{\left (2+x^2\right ) \sqrt{\frac{4+3 x^2+x^4}{\left (2+x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{35 \sqrt{2} \sqrt{4+3 x^2+x^4}}+\frac{289 \left (2+x^2\right ) \sqrt{\frac{4+3 x^2+x^4}{\left (2+x^2\right )^2}} \Pi \left (-\frac{9}{280};2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{9800 \sqrt{2} \sqrt{4+3 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.770724, size = 481, normalized size = 1.69 \[ \frac{-98 i \left (5 x^2+7\right ) \sqrt{2-\frac{4 i x^2}{\sqrt{7}-3 i}} \sqrt{1+\frac{2 i x^2}{\sqrt{7}+3 i}} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{-\frac{2 i}{\sqrt{7}-3 i}} x\right ),\frac{-\sqrt{7}+3 i}{\sqrt{7}+3 i}\right )+35 \left (\sqrt{7}+3 i\right ) \left (5 x^2+7\right ) \sqrt{2-\frac{4 i x^2}{\sqrt{7}-3 i}} \sqrt{1+\frac{2 i x^2}{\sqrt{7}+3 i}} \left (E\left (i \sinh ^{-1}\left (\sqrt{-\frac{2 i}{-3 i+\sqrt{7}}} x\right )|\frac{3 i-\sqrt{7}}{3 i+\sqrt{7}}\right )-\text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{-\frac{2 i}{\sqrt{7}-3 i}} x\right ),\frac{-\sqrt{7}+3 i}{\sqrt{7}+3 i}\right )\right )+700 \sqrt{-\frac{i}{\sqrt{7}-3 i}} x \left (x^4+3 x^2+4\right )-102 i \left (5 x^2+7\right ) \sqrt{2-\frac{4 i x^2}{\sqrt{7}-3 i}} \sqrt{1+\frac{2 i x^2}{\sqrt{7}+3 i}} \Pi \left (\frac{5}{14} \left (3+i \sqrt{7}\right );i \sinh ^{-1}\left (\sqrt{-\frac{2 i}{-3 i+\sqrt{7}}} x\right )|\frac{3 i-\sqrt{7}}{3 i+\sqrt{7}}\right )}{9800 \sqrt{-\frac{i}{\sqrt{7}-3 i}} \left (5 x^2+7\right ) \sqrt{x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[4 + 3*x^2 + x^4]/(7 + 5*x^2)^2,x]

[Out]

(700*Sqrt[(-I)/(-3*I + Sqrt[7])]*x*(4 + 3*x^2 + x^4) + 35*(3*I + Sqrt[7])*(7 + 5*x^2)*Sqrt[2 - ((4*I)*x^2)/(-3
*I + Sqrt[7])]*Sqrt[1 + ((2*I)*x^2)/(3*I + Sqrt[7])]*(EllipticE[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3
*I - Sqrt[7])/(3*I + Sqrt[7])] - EllipticF[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I +
Sqrt[7])]) - (98*I)*(7 + 5*x^2)*Sqrt[2 - ((4*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[1 + ((2*I)*x^2)/(3*I + Sqrt[7])]*E
llipticF[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] - (102*I)*(7 + 5*x^2)*Sq
rt[2 - ((4*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[1 + ((2*I)*x^2)/(3*I + Sqrt[7])]*EllipticPi[(5*(3 + I*Sqrt[7]))/14,
I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])])/(9800*Sqrt[(-I)/(-3*I + Sqrt[7])
]*(7 + 5*x^2)*Sqrt[4 + 3*x^2 + x^4])

________________________________________________________________________________________

Maple [C]  time = 0.023, size = 410, normalized size = 1.4 \begin{align*}{\frac{x}{70\,{x}^{2}+98}\sqrt{{x}^{4}+3\,{x}^{2}+4}}+{\frac{2}{25\,\sqrt{-6+2\,i\sqrt{7}}}\sqrt{1+{\frac{3\,{x}^{2}}{8}}-{\frac{i}{8}}{x}^{2}\sqrt{7}}\sqrt{1+{\frac{3\,{x}^{2}}{8}}+{\frac{i}{8}}{x}^{2}\sqrt{7}}{\it EllipticF} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}}+{\frac{16}{35\,\sqrt{-6+2\,i\sqrt{7}} \left ( i\sqrt{7}+3 \right ) }\sqrt{1+{\frac{3\,{x}^{2}}{8}}-{\frac{i}{8}}{x}^{2}\sqrt{7}}\sqrt{1+{\frac{3\,{x}^{2}}{8}}+{\frac{i}{8}}{x}^{2}\sqrt{7}}{\it EllipticF} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}}-{\frac{16}{35\,\sqrt{-6+2\,i\sqrt{7}} \left ( i\sqrt{7}+3 \right ) }\sqrt{1+{\frac{3\,{x}^{2}}{8}}-{\frac{i}{8}}{x}^{2}\sqrt{7}}\sqrt{1+{\frac{3\,{x}^{2}}{8}}+{\frac{i}{8}}{x}^{2}\sqrt{7}}{\it EllipticE} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}}+{\frac{51}{2450\,\sqrt{-3/8+i/8\sqrt{7}}}\sqrt{1+{\frac{3\,{x}^{2}}{8}}-{\frac{i}{8}}{x}^{2}\sqrt{7}}\sqrt{1+{\frac{3\,{x}^{2}}{8}}+{\frac{i}{8}}{x}^{2}\sqrt{7}}{\it EllipticPi} \left ( \sqrt{-{\frac{3}{8}}+{\frac{i}{8}}\sqrt{7}}x,-{\frac{5}{-{\frac{21}{8}}+{\frac{7\,i}{8}}\sqrt{7}}},{\frac{\sqrt{-{\frac{3}{8}}-{\frac{i}{8}}\sqrt{7}}}{\sqrt{-{\frac{3}{8}}+{\frac{i}{8}}\sqrt{7}}}} \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+3*x^2+4)^(1/2)/(5*x^2+7)^2,x)

[Out]

1/14*x*(x^4+3*x^2+4)^(1/2)/(5*x^2+7)+2/25/(-6+2*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^
2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticF(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2
))+16/35/(-6+2*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3
*x^2+4)^(1/2)/(I*7^(1/2)+3)*EllipticF(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))-16/35/(-6+2*I*7^
(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)/(I*7^
(1/2)+3)*EllipticE(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))+51/2450/(-3/8+1/8*I*7^(1/2))^(1/2)*
(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticPi((-3/8+1
/8*I*7^(1/2))^(1/2)*x,-5/7/(-3/8+1/8*I*7^(1/2)),(-3/8-1/8*I*7^(1/2))^(1/2)/(-3/8+1/8*I*7^(1/2))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{4} + 3 \, x^{2} + 4}}{{\left (5 \, x^{2} + 7\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 4)/(5*x^2 + 7)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{4} + 3 \, x^{2} + 4}}{25 \, x^{4} + 70 \, x^{2} + 49}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7)^2,x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 3*x^2 + 4)/(25*x^4 + 70*x^2 + 49), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )}}{\left (5 x^{2} + 7\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+3*x**2+4)**(1/2)/(5*x**2+7)**2,x)

[Out]

Integral(sqrt((x**2 - x + 2)*(x**2 + x + 2))/(5*x**2 + 7)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{4} + 3 \, x^{2} + 4}}{{\left (5 \, x^{2} + 7\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7)^2,x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 4)/(5*x^2 + 7)^2, x)